Complete solutions of a family of quartic Thue and index form equations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complete solutions of a family of quartic Thue and index form equations

Continuing the recent work of the second author, we prove that the diophantine equation fa(x, y) = x 4 − axy − xy + axy + y = 1 for |a| ≥ 3 has exactly 12 solutions except when |a| = 4, when it has 16 solutions. If α = α(a) denotes one of the zeros of fa(x, 1), then for |a| ≥ 4 we also find all γ ∈ Z[α] with Z[γ] = Z[α].

متن کامل

On the solutions of a family of quartic Thue equations

In this paper, we solve a certain family of diophantine equations associated with a family of cyclic quartic number fields. In fact, we prove that for n ≤ 5× 106 and n ≥ N = 1.191× 1019, with n, n+ 2, n2 + 4 square-free, the Thue equation Φn(x, y) = x 4 − nxy − (n + 2n + 4n+ 2)xy − nxy + y = 1 has no integral solution except the trivial ones: (1, 0), (−1, 0), (0, 1), (0,−1).

متن کامل

A parametric family of quartic Thue equations

In this paper we prove that the Diophantine equation x − 4cxy + (6c+ 2)xy + 4cxy + y = 1, where c ≥ 3 is an integer, has only the trivial solutions (±1, 0), (0,±1). Using the method of Tzanakis, we show that solving this quartic Thue equation reduces to solving the system of Pellian equations (2c+ 1)U − 2cV 2 = 1, (c− 2)U − cZ = −2, and we prove that all solutions of this system are given by (U...

متن کامل

Complete solutions of a family of quartic

Continuing the recent work of the second author, we prove that the diophantine equation fa(x; y) = x 4 ? ax 3 y ? x 2 y 2 + axy 3 + y 4 = 1 for jaj 3 has exactly 12 solutions except when jaj = 4, when it has 16 solutions. If = (a) denotes one of the zeros of fa(x; 1), then for jaj 4 we also nd all 2 Z Z] with Z Z] = Z Z].

متن کامل

On two-parametric family of quartic Thue equations

We show that for all integers m and n there are no non-trivial solutions of Thue equation x − 2mnxy + 2 ( m − n + 1 ) xy + 2mnxy + y = 1, satisfying the additional condition gcd(xy,mn) = 1.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 1996

ISSN: 0025-5718

DOI: 10.1090/s0025-5718-96-00662-x